History of  Hydroponics Gardening   Gardening    History    Essentials of Gardening    Types of Gardening    Bonsai    Kids Gardening    Types of Plants    Herb Gardening    Hydroponics Gardening    Worldwide Gardening    Articles    Plant Diseases    Glossory
Free E-magazine
Subscribe to our Free E-Magazine on Gardening.
Learn More
Jimtrade.com : India Business to Business Directory
Business Directory of Indian Suppliers Manufacturers and Products from India.
India`s leading Yellow pages directory.
India`s leading Yellow pages directory.
Home > Hydroponics Gardening > History of Hydroponics
History of Hydroponics Gardening
Hydroponics, the growing of plants without soil, has developed from the findings of experiments carried out to determine what substances make plants grow and the composition of plants. Such work on plant constituents dates back as early as the 1600s. However, plants were being grown in a soilless culture far earlier than this. Hydroponics is at least as ancient as the pyramids. A primitive form has been carried on in Kashmir for centuries.

 hanging gardenThe process of hydroponics growing in our oceans goes back to about the time the earth was created. Hydroponic growing preceded soil growing. But as a farming tool, many believe it started in the ancient city of Babylon with it`s famous hanging gardens, which are listed as one of the Seven Wonders of the Ancient World, and was probably one of the first successful attempts to grow plants hydroponically.

The floating gardens of the Aztecs of Central America, a nomadic tribe, they were driven onto the marshy shore of Lake Tenochtitlan, located in the great central valley of what is now Mexico. Roughly treated by their more powerful neighbors, denied any arable land, the Aztecs survived by exercising remarkable powers of invention. Since they had no land on which to grow crops, they determined to manufacture it from the materials at hand.

History of  Hydroponics GardeningIn what must have been a long process of trial and error, they learned how to build rafts of rushes and reeds, lashing the stalks together with tough roots. Then they dredged up soil from the shallow bottom of the lake, piling it on the rafts. Because the soil came from the lake bottom, it was rich in a variety of organic debris, decomposing material that released large amounts of nutrients. These rafts, called Chinampas, had abundant crops of vegetables, flowers, and even trees planted on them. The roots of these plants, pushing down towards a source of water, would grow though the floor of the raft and down into the water.

These rafts, which never sank, were sometimes joined together to form floating islands as much as two hundred feet long. Some Chinampas even had a hut for a resident gardener. On market days, the gardener might pole his raft close to a market place, picking and handing over vegetables or flowers as shoppers purchased them. By force of arms, the Aztecs defeated and conquered the peoples who had once oppressed them. Despite their great size their empire finally assumed, they never abondoned the site on the lake. Their once crude village became a huge, magnificent city and the rafts, invented in a gamble to stave off perverty, proliferated to keep pace with the demands of the capital city of Central Mexico.

Upon arriving to the New World in search of gold, the sight of these islands astonished the conquering Spainards. Indeed, the spectacle of an entire grove of trees seemingly suspended on the water must have been perplexing, even frightening in those 16th century days of the Spanish conquest.

William PrescottWilliam Prescott, the historian who chronicled the destruction of the Aztec empire by the Spaniards, described the Chinampas as "Wondering Islands of Verdure, teeming with flowers and vegetables and moving like rafts over the water". Chinampas continued in use on the lake well into the nineteenth century, though in greatly diminished numbers. So, as you can see, hydroponics is not a new concept.

Many gardening writers have suggested that the Hanging Gardens of Babylon were in fact an elaborate hydroponic system, into which fresh water rich in oxygen and nutrients was regularly pumped.

The world`s rice crops have been grown in this way from time immemorial. And also the floating gardens of the Chinese, as described by Marco Polo in his famous journal, are examples of "hydroponic culture".

Ancient Egyptian hieroglyphic records dating back to several hundred years B.C. describe the growing of plants in watre along the nile without soil.

Before the time of Aristotle, Theophrastus (327-287 B.C.) undertook various experiments in crop nutrition. Botanical studies by Dioscorides date back to the first century A.D. The earliest recorded scientific approach to discover plant constituents was in 1600 when Belgian Jan van Helmont showed in his classical experiment that plants obtain substances from water. He planted a 5-pound willow shoot in a tube containing 200 pounds of dried soil that was covered to keep out dust. After 5 years of regular watering with rainwater he found the willow shoot increased in weight by 160 pounds, while the soil lost less than 2 ounces. His conclusion that plants obtain substances for growth from water was correct. However, he failed to realize that they also require carbon dioxide and oxygen from the air.

In 1699, John Woodward, a fellow of the Royal Society of England, grew plants in water containing various types of soil, the first man-made hydroponic nutrient solution, and found that the greatest growth occurred in water which contained the most soil. Since they knew little of chemistry in those days, he was not able to identify specific growing elements. He thereby concluded that plant growth was a result of certain substances and minerals in the water, derived from enriiched soil, rather than simply from water itself. In the decades that followed Woodwards research. European plant physiologists established many things. They proved that water is absorbed by plant roots, that it passes through the plants stem system, and that it escapes into the air through pores in the leaves. They showed that plant roots take up minerals from eithr soil or water, and that leaves draw carbon dioxide from the air. They demonstrated that plants roots also take up oxygen.

Further progress in identifying these substances was slow until more sophisticated research techniques were developed and advances were made.

The modern theory of chemistry, made great advances during the seventeenth and eighteenth centuries, subsequently revolutionized scientific research. Plants when analyzed, consisted only of elements derived from water, soil and air.

The experiments of Sir Humphrey Davy, inventor of the Safety-Lamp, had evolved a method of effecting chemical decomposition by means of an electric current. Several of the elements which go to make up matter were brought to light, and it was now possible for chemists to split-up a compound into it`s constituent parts.

In 1792 the brilliant English scientist Joseph Priestley discovered that plants placed in a chamber having a high level of "Fixed Air" (Carbon Dioxide) will gradually absorb the carbon dioxide and give off oxygen. Jean Ingen-Housz, some two years later, carried Priestley`s work one step further, demonstrating that plants set in a chamber filled with carbon dioxide could replace the gas with oxygen within several hours if the chamber was placed in sunlight. Because sunlight alone had no effect on a container of carbon dioxide, it was certain that the plant was responsible for this remarkable transformation. Ingen-Housz went on to establish that this process worked more quickly in conditions of bright light, and that only the green parts of a plant were involved.

In 1804, Nicolas De Saussure proposed and published, results of his investigations that plants are composed of mineral and chemical elements obtained from water, soil and air. By 1842 a list of nine elements believed to be essential to plant growth had been made out. These propositions were later verified by Jean Baptiste Boussingault (1851), a French scientist who began as a mineralogist employed by a mining company, turned to agricultural chemistry in the early 1850s.

In his experiments with inert growing media. By feeding plants with water soulutions of various combinations of soil elements growing in pure sand, quartz and charcoal (an inert medium not soil), to which were added solutions of known chemical composition. He concluded that water was essential for plant growth in providing hydrogen and that plant dry matter consisted of hydrogen plus carbon and oxygen which came from the air. He also stated that plants contain nitrogen and other mineral elements, and derive all of their nutrient requirements from the soil elements he used, he was then able to identify the mineral elements and what proportions were necessary to optimize plant growth, which was a major breakthrough.

In 1856 Salm-Horsmar developed techniques using sand and other inert media, various research workers had demonstrated by that time that plants could be grown in an inert medium moistened with a water solution containing minerals required by the plants. The next step was to eliminate the medium entirely and grow the plants in a water solution containing these minerals.

From discoveries and developments in the years 1859-1865 this technique was accomplished by two German scientists, Julius von Sachs (1860), professor of Botany at the University of Wurzburg (1832-1897), and W. Knop (1861), an agricultural chemist. Knop has been called "The Father of Water Culture".

Professor Julius von Sachs In that same year (1860), Professor Julius von Sachs published the first standard formula for a nutrient solution that could be dissolved in water and in which plants could be successfully grown. This marked the end of the long search for the source of the nutrients vital to all plants.

This was the origin of "Nutriculture" and similar techniques are still used today in laboratory studies of plant physiology and plant nutrition. These early investigations in plant nutrition demonstrated that normal plant growth can be achieved by immersing the roots of a plant in a water solution containing salts of nitrogen (N), phosphorus (P), sulfur (S), potassium (K), calcium (Ca), and magnesium (Mg), which are now defined as the macroelements or macronutrients (elements required in relatively large amounts). With further refinements in laboratory techniques and chemistry, scientists discovered seven elements required by plants in relatively small quantities - the microelements or trace elements. These include iron (Fe), chlorine (Cl), manganese (Mn), boron (B), zinc (Zn), copper (Cu), and molybdenum (Mo).

The addition of chemicals to water was found to produce a nutrient solution which would support plant life, so that by 1920 the laboratory preparation of water cultures had been standardized and the methods for their use were well established.

In following years, researchers developed many diverse basic formulas for the study of plant nutrition. Some of these workers were Tollens (1882), Tottingham (1914), Shive (1915), Hoagland (1919), Deutschmann (1932), Trelease (1933), Arnon (1938) and Robbins (1946). Many of their formulas are still used in laboratory research on plant nutrition and physiology today.

Interest in practical application of this "Nutriculture" did not develop until about 1925 when the greehouse industry expressed interest in its use. Greenhouse soils had to be replaced frequently to overcome problems of soil structure, fertility and pests. As a result, research workers became aware of the potential use of nutriculture to replace conventional soil cultural methods.

Prior to 1930, most of the work done with soilless growing was oriented to the laboratory for various plants experiments. Nutriculture, chemiculture, and aquiculture were other terms, used during the 1920s and 1930s to describe soilless culture. Between 1925 and 1935, extensive development took place in modifying the laboratory techniques of nutriculture to large-scale crop production.
History of Hydropon.. Hydroponics Gardenin.. India and Hydroponic..
Recent Developments Types of Hydroponic .. Water Culture
N.F.T System Importance of Hydrop.. Pest Control
Differences between .. Hydroponic - Soilles..
Indianetzone.com | Home | Sitemap | Contact Us